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Parameterized Joint Reconstruction of the Initial Pressure and Sound Speed
Distributions for Photoacoustic Computed Tomography∗
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Abstract. Accurate estimation of the initial pressure distribution in photoacoustic computed tomography
(PACT) depends on knowledge of the sound speed distribution. However, the sound speed distribu-
tion is typically unknown. Further, the initial pressure and sound speed distributions cannot both,
in general, be stably recovered from PACT measurements alone. In this work, a joint reconstruction
(JR) method for the initial pressure distribution and a low-dimensional parameterized model of the
sound speed distribution is proposed. By employing a priori information about the structure of the
sound speed distribution, both the initial pressure and sound speed can be accurately recovered.
The JR problem is solved by use of a proximal optimization method that allows constraints and
nonsmooth regularization functions for the initial pressure distribution. The gradients of the cost
function with respect to the initial pressure and sound speed distributions are calculated by use
of an adjoint state method that has the same per-iteration computational cost as calculating the
gradient with respect to the initial pressure distribution alone. This approach is evaluated through
two-dimensional computer-simulation studies for a small animal imaging model and by application
to experimental in vivo measurements of a mouse.
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1. Introduction. Photoacoustic computed tomography (PACT) is a hybrid imaging modal-
ity that combines optical absorption contrast with acoustic detection [58, 40, 57, 56]. PACT
can provide both structural and functional information and has been employed for human
and small animal imaging applications [30, 20, 63, 16, 31, 61, 17]. PACT has a number of
advantages over other functional imaging modalities: compared with MRI, it offers faster
image acquisition at lower costs; compared with PET and SPECT, it does not involve use of
ionizing radiation; and compared with other optical imaging modalities, it has the ability to
obtain high-resolution images at large penetration depths [59].

In PACT, typically, a short laser pulse is employed to illuminate the object. The laser light
is absorbed by molecules within the object, giving rise to an initial pressure distribution via
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the photoacoustic effect. This pressure distribution then propagates according to the acoustic
properties of the medium, and the resulting pressure waves are measured by a collection of
ultrasonic transducers surrounding the object.

Traditional image reconstruction methods for PACT assume that the medium is acous-
tically homogeneous. However, this assumption is often violated for biomedical applications
[64, 23, 43]. To mitigate artifacts induced by this assumption, half-time and partial-time image
reconstruction methods, which seek to exploit redundant information in data and eliminate
parts of the data that are disproportionately affected by inhomogeneities, have been proposed
[3, 2, 43]. Additionally, some image reconstruction methods have the ability to compensate
for sound speed variations if the sound speed distribution is known [22, 52, 24, 4, 44, 46, 31].
In practice, however, the sound speed distribution is not known. Adjunct imaging data, such
as ultrasound tomography measurements, could be acquired to allow estimation of the sound
speed distribution [27, 62, 34, 35]. While ultrasound tomography can be employed to accu-
rately estimate the sound speed distribution [15, 60, 10, 19, 21], not all PACT imaging systems
are capable of acquiring the necessary measurements. Thus, there is a need to estimate some
approximation of the sound speed distribution from PACT measurements alone.

Various methods have been proposed to accomplish this. For image reconstruction meth-
ods assuming a constant sound speed, this sound speed can be tuned according to some image
quality metric. For example, Treeby et al. describe a method by which this sound speed can
be chosen automatically by maximizing a measure of image sharpness [51]. Such approaches
can be difficult to apply when the assumed sound speed distribution is more complex and
many sound speed values need to be estimated.

Several previous works have addressed joint estimation of the sound speed and initial
pressure distributions [47, 25, 32, 29, 39, 65, 66] and the related problem of joint estimation of
the sound speed and optical absorption coefficient distributions [13]. In particular, Stefanov
and Uhlmann considered the joint estimation problem for the linearized wave equation and
demonstrated that, in general, the sound speed and initial pressure distributions could not
both be stably recovered [47]. Similar observations were made by Huang et al. via computer-
simulation studies for the full acoustic wave equation [25].

In [66], Zhang et al. proposed use of a low-dimensional representation of the sound speed
distribution in order to stabilize the joint reconstruction (JR) problem. The sound speed and
initial pressure distributions were estimated by minimizing an objective function consisting of
a data fidelity term, which describes the distance between the measured pressure and the esti-
mated pressure given some model, and a pair of regularization terms. The objective function
was minimized by use of a gradient-based alternating minimization approach. A generalized
Radon transform model, which assumes that the acoustic heterogeneities are relatively weak,
was employed for estimating the measured pressure. In addition, the gradient of the objective
function with respect to the parameterized sound speed distribution was calculated using a
finite-difference-based approach. Under this approach, the computational cost of calculating
the gradient scaled linearly with the number of parameters in sound speed model.

In this work, the idea of employing a parameterized sound speed model to stabilize the
JR problem is revisited and extended in several key ways. First, a full-wave acoustic model,
which does not assume that the acoustic heterogeneities are weak, is employed. This al-
lows more accurate simulation of wave propagation through bone and other materials whose
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acoustic properties differ greatly from the background medium. Second, an efficient method
for computing the gradients with respect to the initial pressure and sound speed distributions,
whose computational cost does not depend on the number of parameters in the sound speed
model, is provided. Third, the optimization method is updated to allow use of nonsmooth
regularization terms. Fourth, the approach is applied to experimental data.

The remainder of the manuscript is organized as follows. In section 2, background informa-
tion on the imaging model and existing image reconstruction methods is provided. In section
3, the proposed parameterized JR method is introduced. A description of the computer-
simulation studies is given in section 4 and the results of these studies are shown in section
5. In section 6, a description of the experimental studies is provided. Results of these studies
are shown in section 7. Finally, the results are summarized in section 8.

2. Background.

2.1. Imaging physics. In PACT, an object is illuminated with a short optical pulse. Some
of this optical energy is absorbed and converted into an initial pressure distribution via the
photoacoustic effect [40, 56, 59]. This initial pressure distribution then propagates in a way
that depends on the acoustic properties of the medium. The resulting pressure wavefield is
recorded by a collection of ultrasonic transducers surrounding the object.

Assuming a lossless medium, the photoacoustic wave propagation is described by the
following coupled differential equations [49, 50]:

ρ (r)
∂u (r, t)

∂t
+∇p (r, t) = 0,(1a)

1

ρ (r) c (r)2

∂p (r, t)

∂t
+∇ · u (r, t) = 0,(1b)

p (r, 0) = p0 (r) ,(1c)

u (r, 0) = 0,(1d)

where u is the acoustic particle velocity, p is the acoustic pressure, ρ is the mass density, c is
the sound speed, and p0 is the initial pressure distribution.

The pressure recorded by the ith ultrasonic transducer can be denoted as [55]

gi (t) =Mip (r, t) ,(2)

where Mi is an operator that gives the pressure measured by the ith transducer given the
pressure over the whole domain. Here, Mi is chosen to have the form

Mi ≡ he (t) ∗t Λi,(3)

where ∗t denotes the temporal convolution operator, he (t) is the electro-acoustic impulse
response (EIR), which accounts for the frequency response of the transducers, and Λi is the
restriction of the pressure to the location of the ith transducer. For simplicity, the EIR is
assumed to be the same for all transducers. The spatial impulse response of the transducers
is not considered in this work.
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2.2. Forward model in discrete form. In discrete form, the forward model can be denoted
as

g = MH (c) p0,(4)

where c ∈ RN is a discrete representation of the sound speed distribution c (r), p0 ∈ RN
is a discrete representation of the initial pressure distribution p0 (r), H (c) ∈ RNL×NL is an
operator that gives a discrete approximation of the solution to the acoustic wave equation given
in (1), M ∈ RML×NL is an operator that gives the pressure recorded by the transducers from
the pressure over the whole domain (i.e., it is a concatenation of the discrete approximations
ofMi for all transducers), and g ∈ RML is the measured data at the transducers. Here, N is
the total number of pixels in the simulation grid, M is the number of transducers acting as
receivers, and L is the number of time points employed as part of the wavefield simulation.

2.3. Reconstruction of the initial pressure distribution. An estimate of the initial pres-
sure distribution for some fixed sound speed distribution c can be obtained by solving the
optimization problem [54]

p̂0 = arg min
p0≥0

F (p0, c) + βR (p0) ,(5)

where F (p0, c) is the data fidelity term, which describes a distance between the measured
data and the predicted data given the initial pressure and sound speed distributions, R (p0)
is a regularization term, which incorporates a priori information about the sought-after initial
pressure distribution, and β is a regularization parameter that controls the relative weight of
the data fidelity and regularization terms. Here, the data fidelity is given by

F (p0, c) ≡ 1

2
‖g −MH (c) p0‖22,(6)

where g is the recorded pressure data, which may not be consistent with the assumed forward
model. Further, the regularization function is chosen to be the total-variation (TV) seminorm
[11],

R (p0) ≡ ‖∇p0‖1.(7)

The optimization problem given in (5) is solved by use of the FISTA optimization method with
a backtracking line search and an adaptive restart procedure [24, 7, 6, 38]. As described in [6],
the nonnegativity constraint is incorporated when solving the proximal problem corresponding
to the TV regularization term.

3. Parameterized joint reconstruction.

3.1. Sound speed parameterization. To constrain the JR problem, a low-dimensional
parameterized representation of the sound speed distribution is considered. Let cp ∈ RQ de-
note the parameterized model, whose elements may be sound speed values or other parameters
useful for calculating the sound speed distribution over the whole domain. Further, let the
parameterized model be related to the sound speed distribution over the whole domain as

c = Φ (cp) ,(8)
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where Φ (·) is continuously differentiable. In the case where the mapping from cp to c is linear,
the relationship can be described as

c = Φcp,(9)

where Φ ∈ RN×Q. For the computer-simulation and experimental studies described in sec-
tions 4–7, each pixel in the simulation grid was assumed to correspond to one of Q tissue types
with each tissue type having a uniform sound speed. In this case, cp is simply the vector of
sound speed values for the different tissue types and Φ is given by

[Φ]i,j ≡

{
1 i ∈ Ij ,
0 otherwise,

(10)

where Ij denotes the set of indices within the simulation grid that correspond to the jth
parameterized sound speed value and [A]i,j denotes the (i, j) element of the matrix A.

3.2. Joint reconstruction. Given some choice for Φ, the parameterized JR problem is
given by

p̂0, ĉp = arg min
p0≥0,cp

F (p0,Φ (cp)) + βR (p0) .(11)

The gradient of the data fidelity term with respect to the parameterized sound speed distri-
bution can be related to the gradient with respect to the sound speed over the whole domain
via the chain rule as

∇cpF (p0,Φ (cp)) =

(
∂c

∂cp

)T
∇cF (p0,Φ (cp)) ,(12)

where [
∂c

∂cp

]
i,j

=
∂ [c]i
∂ [cp]j

.(13)

When Φ corresponds to a real-valued linear mapping, the gradient with respect to the param-
eterized sound speed distribution is given by

∇cpF (p0,Φcp) = ΦT∇cF (p0,Φcp) .(14)

For the choice of Φ employed in this work, this expression reduces to[
∇cpF (p0,Φcp)

]
j

=
∑
i∈Ij

[∇cF (p0,Φcp)]i .(15)

Based on (15), the magnitude of each component of ∇cpF will depend on the number of pixels
that correspond to each component of cp. This can result in a gradient that is poorly scaled,
leading to slow convergence. To combat this, a diagonal, positive-definite scaling matrix is
introduced,

[B]j =
1

|Ij |
,(16)
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resulting in a new search direction B∇cpF that represents the average gradient over the pixels
for each component of the parameterized sound speed distribution. Since B is positive-definite
by construction, this new search direction is always a descent direction. Other choices for B
could result in even faster convergence; however, the proposed choice requires little additional
computational cost and ensures that the magnitude of each gradient component does not
depend strongly on the number of pixels corresponding to each parameter.

With this, a weighted proximal gradient descent method, summarized in Algorithm 1, is
employed to solve (11). The gradients with respect to the initial pressure and sound speed
distributions are calculated via the adjoint state method as described in Appendices A and B.
Under this approach, both gradients can be computed with only two wave solver runs. This is
far fewer than required by a finite-difference-based approach and fewer than if the gradients
were calculated independently. For brevity, the following notation is employed:

F (k) ≡ F
(
p

(k)
0 , Φ

(
c(k)
p

))
,(17a)

G(k)
p ≡ ∇p0F

(
p

(k)
0 ,Φ

(
c(k)
p

))
,(17b)

G(k)
c ≡ ∇cpF

(
p

(k)
0 ,Φ

(
c(k)
p

))
,(17c)

where the superscript k refers to the kth iteration of the algorithm. In addition, the notation
proxR (·) is employed for the proximity operator of R. A two-parameter line search method,
described in Appendix C, is employed to choose separate scalar step sizes for updating the
initial pressure and sound speed distributions.

Algorithm 1 Parameterized joint reconstruction method.

Input: c
(0)
p ,p

(0)
0 , β

Output: ĉp, p̂0

1: k ← 0 {k is the algorithm iteration number.}
2: while stopping criterion is not satisfied do

3: Calculate G
(k)
p and G

(k)
c

4: Choose αpk and αck via Algorithm 2

5: p
(k+1)
0 ← proxαp

kβR

(
p

(k)
0 − α

p
kG

(k)
p

)
6: c

(k+1)
p ← c

(k)
p − αckBG

(k)
c

7: k ← k + 1
8: end while
9: ĉp ← c

(k)
p

10: p̂0 ← p
(k)
0

4. Description of computer-simulation studies. Two-dimensional computer-simulation
studies were performed in order to validate the proposed approach. Most studies were based
on a piecewise constant numerical mouse phantom. An additional study was also performed
with a vessel-like phantom in order to investigate the impact of high frequency content in the
measured pressure on the inverse problem.
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(a) (b) (c) (d)

Figure 1. (a) A schematic of the segmented tissue types within the mouse. The labels for each numbered
tissue type are given in Table 1. Phantoms for (b) the normalized initial pressure distribution, given in arbitrary
units, (c) the sound speed distribution, given in units of mm/µs, and (d) the mass density distribution, given
in units of mg/mm3. In order to better visualize the soft tissue variations for the sound speed distribution, the
grayscale window for this phantom was set to [1.47, 1.7] mm/µs resulting in saturation of the bone, which has
a sound speed value of 3.198 mm/µs.

Table 1
Parameter values for the initial pressure, sound speed, and mass density distributions for each tissue type.

The normalized initial pressure values are roughly based on the relative concentration of blood for each tissue
type [48, 33, 28, 18].

Index Region Initial pressure Sound speed Mass density
[mm/µs] [mg/mm3]

0 Water 0.0 1.480 1.00
1 Bulk tissue 0.3 1.540 1.00
2 Bone 0.1 3.198 1.99
3 Kidney 0.9 1.560 1.00
4 Liver 1.0 1.578 1.00
5 Pancreas 0.3 1.591 1.00
6 Spleen 0.5 1.567 1.00

4.1. Methods.

4.1.1. Numerical mouse phantom. The chosen numerical phantoms are based on seg-
mented µCT images of a mouse produced by the DigiMouse project [14]. From one segmented
slice, phantoms for the initial pressure and sound speed distributions were produced (see Fig-
ure 1). Each segmented region was assigned a constant initial pressure value and a constant
sound speed value based on the tissue type. The initial pressure values were chosen based on
the relative concentration of blood in each tissue type, as hemogloblin is one of the strongest
endogenous optical absorbers in the body over the visible and near-infrared wavelength ranges
[26]. The impact of optical fluence variations were not considered in this work. For most
studies, the mass density was assumed to be homogeneous. These values are summarized in
Table 1.

4.1.2. Imaging system. The imaging system was assumed to contain 512 ultrasonic trans-
ducers evenly distributed about a ring of radius 50 mm. The transducers were treated as
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Figure 2. (a) The pressure amplitude and (b) frequency spectrum of the EIR employed in the main
computer-simulation studies.

point-like detectors with the EIR given in Figure 2. The transducers were placed on the
simulation grid by use of nearest neighbor interpolation.

4.1.3. Simulation of pressure data. In order to avoid inverse crime [12], the measured
pressure data were simulated with different temporal and spatial sampling rates than employed
for image reconstruction. When generating the measured data, the simulation grid consisted
of a Cartesian grid with 1536 × 1536 pixels and a pixel size of 0.075 mm. The pressure
data were recorded for 8000 time steps at a temporal sampling rate of 120 MHz. Additive
Gaussian white noise with zero mean and a standard deviation of 2% of the maximum pressure
amplitude was added to the measured data. The k-Wave toolbox was employed to simulate
the measured pressure data [50].

4.1.4. Image reconstruction. During image reconstruction, the simulation grid consisted
of 768 × 768 pixels with a pixel size of 0.15 mm. The pressure wavefield was simulated for
4000 time steps with a temporal sampling rate of 60 MHz. During the image reconstruction
process, the pressure was simulated by use of a C-based numerical wave solver, implemented
using NVIDIA’s CUDA framework [1]. The gradients were estimated within a field-of-view of
radius 20 mm.

4.2. Fixed constant sound speed. Initial pressure distributions were reconstructed by
use of (5) for several fixed constant sound speed values and choices of β values. The stopping
criterion was when the change in the `2-norm of the initial pressure distribution between
successive iterations was less than 10−4.

Most image reconstruction algorithms in PACT assume a constant speed. In practice,
the value of this constant sound speed is tuned according to some criteria. The reconstructed
initial pressure distribution images for several constant sound speeds were evaluated according
to three such criteria: 1) the root-mean-square error (RMSE), 2) the value of the cost function
given in (5), and 3) the Tenenbaum sharpness [51]. Use of the Tenenbaum sharpness for
choosing a constant sound speed value was previously proposed by Treeby et al. [51]. Joint
reconstruction with a 1-parameter model can be viewed as choosing the sound speed value
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Table 2
Different sound speed parameterizations employed during image reconstruction.

Q Regions

1 Constant sound speed
2 1) Background, 2) Mouse
3 1) Background, 2) Soft tissue, 3) Bone
7 1) Background, 2) Bulk tissue, 3) Bone, 4) Kidney,

5) Liver, 6) Pancreas, 7) Spleen
55869 All pixels within field-of-view

according to the value of the cost function. The agreement between these three measures is
evaluated. The best criteria to employ to choose a constant sound speed value will depend on
the task or tasks for which the image will be utilized [5]. Here, only a few simpler measures
are considered.

4.3. Joint reconstruction. Several different sound speed parameterizations were consid-
ered in this work, each with a different number of parameters. These parameterizations are
summarized in Table 2. For this initial investigation, the boundaries of these regions were
based on the true segmented regions shown in Figure 1(a). When the assumed parameteriza-
tion is too simple to describe the true sound speed variations within the object, model error
will lead to errors in the reconstructed images. When the assumed parameterization is very
complex, the inverse problem may be poorly conditioned and may have many local minima or
saddle points. By considering a range of different parameterizations with different numbers
of parameters, this trade-off between model error and the conditioning of the inverse problem
is investigated.

The initial guess for initial pressure distribution was the vector of all zeros. The initial
guess for the parameterized sound speed distribution depended on the number of parameters
employed and the corresponding tissue types. The initial guesses for the different tissues were
1.48 mm/µs for the background, 1.50 mm/µs for all soft tissues, and 3.00 mm/µs for the bone.
For fairness of comparison, the initial guess for the 55869-parameter model was chosen such

that Φc
(0)
p was the same as for the 3-parameter and 7-parameter models, even though this

model does not suggest any prior knowledge of the different tissue types present in the object.
The numerical wave solver can become inaccurate when high spatial frequencies are present

in the sound speed distribution [49]. To avoid sharp discontinuities between the different
parameterized regions, the sound speed distribution is smoothed with a Gaussian filter with
a standard deviation of 1 pixel prior to running the numerical wave solver.

The stopping criterion was when the change in the `2-norm of the object between successive
iterations was less than 10−4. In this case, the object refers to the concatenation of the initial
pressure and parameterized sound speed distributions.

4.4. Impact of mass density variations. In this work, mass density variations are ignored
during the JR process. While the derived methods can naturally be extended to include
mass density variations, for simplicity, the medium is assumed to have homogeneous mass
density. However, the assumption of homogeneous mass density may be poor when bone or
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6 mm

(a)

6 mm

(b)

Figure 3. Estimated segmented regions for (a) a two-parameter sound speed model and (b) a three-parameter
sound speed model.

air voids are present in the object. To better understand the impact of ignoring mass density
variations, the measured data were simulated with the heterogeneous mass density distribution
shown in Figure 1(d). The mass density values for each of the tissue types are summarized in
Table 1. During the image reconstruction process, a homogeneous mass density distribution
was assumed.

4.5. Imperfect parameterization. To better understand the impact of errors in the as-
sumed tissue type regions, approximate sound speed parameterizations were determined by
segmenting a pair of reconstructed initial pressure distribution images. Two approximate
parameterizations, shown in Figure 3, were employed. For the first, a two-parameter sound
speed model was obtained by segmenting the outer boundary of the mouse from the recon-
structed initial pressure image obtained by JR with a one-parameter sound speed model. The
segmented region was determined by thresholding the initial pressure image with a cutoff of
0.1. For the second, a three-parameter sound speed model was employed. The outer boundary
of the mouse was the same as for the first approximate parameterization. The outer boundary
of the bone was estimated by manually segmenting a reconstructed initial pressure distribu-
tion image obtained by assuming a fixed constant sound speed value of 1.51 mm/µs. It was
observed that the boundary of the bone could be more readily determined for this sound speed
value, which was higher than that obtained by JR.

4.6. High-frequency pressure data. Due to the nature of the chosen initial pressure
phantom, shown in Figure 1(b), the measured data consist of predominately low-frequency
content. Accurate recovery of the sound speed distribution, and in turn accurate JR, can be
challenging from high-frequency data due to the phenomenon of cycle skipping [53, 8]. Cycle
skipping occurs when the cumulative phase error for a given frequency component exceeds π
(or, equivalently, the traveltime error exceeds half of the period). In this case, the optimization
method may align a given peak (or trough) in the simulated data with a neighboring peak in
the measured data rather than with the true corresponding peak.

Several methods have been employed to address cycle skipping in ultrasound tomography
and geophysics. When a frequency-domain wave solver is utilized, a common strategy is
to use a frequency hopping method in which progressively higher frequencies are utilized to
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(a) (b)

Figure 4. Phantoms for (a) the initial pressure distribution, given in arbitrary units, and (b) the sound
speed distribution, given in units of mm/µs, for the high-frequency computer-simulation studies.
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Figure 5. (a) The pressure amplitude and (b) frequency spectrum of the EIR employed in the high-frequency
computer-simulation studies.

estimate the sound speed distribution [45]. For time-domain wave solvers, a similar result can
be achieved by low-pass filtering the measured data or through the use of multiscale methods
[9, 8].

To investigate the utility of these approaches for parameterized JR, the topology of the
data fidelity term was investigated for measured data that were filtered with several low-pass
filters with different cutoff frequencies.

To obtain high-frequency measured data, a new vessel-like phantom, which contains much
finer structures, is considered. This phantom was provided by the k-Wave toolbox [50].
The sound speed phantom consists of a circle with a radius of 15 mm and sound speeds
of 1.50 mm/µs for the background and 1.54 mm/µs for the tissue-mimicking circle. Both
phantoms are shown in Figure 4. In order to better capture the high-frequency content gen-
erated by the new phantom, a new EIR, shown in Figure 5, with a higher central frequency is
employed. The measured pressure was simulated on a grid with 2048×2048 pixels and a pixel
size of 0.05 mm. The pressure data were recorded for 8000 time points at a sampling rate of
160 MHz. Additive Gaussian white noise with zero mean and a standard deviation of 0.5% of
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(d)

Figure 6. Reconstructed initial pressure distributions for β = 10−3 and fixed constant sound speed values of
(a) 1.48 mm/µs, (b) 1.49 mm/µs, (c) 1.50 mm/µs, and (d) 1.51 mm/µs. The images are shown in a grayscale
window of [0.0, 1.1].

Table 3
Values of different metrics that could be employed for selecting a constant sound speed value. The optimal

value according to each metric is shown in bold.

Metric 1.485 1.49 1.495 1.50 1.505 1.51

Sharpness ×103 2.55 3.65 4.00 3.04 2.65 2.60
Cost 58.9 32.7 22.2 33.0 55.7 78.3
RMSE ×10−2 7.42 7.34 7.17 6.83 7.15 8.19

the maximum of the measured pressure was added to the data. The data were then filtered
with several Hann low-pass filters with cutoff frequencies of 2 MHz, 4 MHz, and 6 MHz and
downsampled to a sampling rate of 80 MHz. The value of data fidelity term was evaluated
by employing a simulation grid of 1024×1024, a pixel size of 0.1 mm, 4000 time points, and
a sampling rate of 80 MHz. The data fidelity term was evaluated at a collection for tissue
sound speed values and separately for a collection of background sound speed values. The
true initial pressure distribution and the remaining sound speed value were kept fixed at their
true values.

5. Results of computer-simulation studies.

5.1. Fixed sound speed. The reconstructed initial pressure distributions for several fixed
constant sound speed values and β = 10−3 are shown in Figure 6. The RMSEs of each image
are shown in the lower left-hand corner. The value of β was tuned in order to minimize the
RMSEs for each sound speed.

Three criteria for selecting the optimal constant sound speed are compared: 1) the Tenen-
baum sharpness [51], 2) the value of the cost function given in (11), and 3) the RMSEs. The
values of the metrics for several constant sound speed values can be found in Table 3. For
consistency, all results are reported for the β = 10−3 case, even though the RMSE is lower for
a lower value of β for the 1.495 mm/µs sound speed case.

The sharpness and cost metrics both suggest a constant sound speed value of 1.495 mm/µs,
while the RMSE suggests a similar, though slightly higher, value of 1.500 mm/µs. In practice,
it is not possible to tune the sound speed according to the RMSE as the true initial pressure
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Figure 7. Reconstructed initial pressure distributions for parameterized JR for β = 10−4 with (a) 1 param-
eter, (b) 2 parameters, (c) 3 parameters, (d) 7 parameters, and (e) 55869 parameters. The images are shown
in a grayscale window of [0.0, 1.1].

distribution is unknown. Both the sharpness and cost metrics may serve as adequate proxies.
In some cases, performing JR, in which a single image is reconstructed, may be quicker
than reconstructing a series of images for different sound speed values and evaluating them
according to some metric. It may also be possible to design the cost function such that the
cost metric more closely matches the relevant image quality measure.

5.2. Joint reconstruction. Initial pressure distributions and parameterized sound speed
distributions were jointly reconstructed for the five parameterizations given in Table 2. The
reconstructed initial pressure distributions are shown in Figure 7. For the purposes of evalu-
ation and comparison with the fixed constant sound speed results, the value of β was tuned
to minimize the RMSE of the initial pressure distribution. The accuracy of the reconstructed
initial pressure distributions is greatly improved when the chosen sound speed parameteri-
zation allows compensation for the bone (Q ≥ 3), which is the strongest source of acoustic
heterogeneity in the phantom. This is reflected in both the apparent visual quality of the
images and the RMSEs. Additionally accounting for sound speed variations within the soft
tissue (Q = 7) leads to a minor improvement in the RMSE. The RMSE of reconstructed initial
pressure distribution when the sound speed parameterization allows the sound speed values
for each pixel to be independently estimated (Q = 55869) is worse than either the Q = 3
or Q = 7 cases. However, there is little obvious visual difference for the three cases where
Q ≥ 3.
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Figure 8. Reconstructed sound speed distributions for parameterized JR for β = 10−4 with (a) 1 parameter,
(b) 2 parameters, (c) 3 parameters, and (d) 7 parameters, and (e) 55869 parameters. The images are shown in
a grayscale window of [1.47, 1.70] mm/µs.

Table 4
Estimated sound speed values for different parameterized sound speed models. For models with Q < 7, the

estimated sound speed values represent effective sound speeds across several different tissue types.

Water Bulk tissue Bone Kidney Liver Pancreas Spleen

True 1.480 1.540 3.198 1.560 1.578 1.591 1.567

Q = 1 1.495 – – – – – –
Q = 2 1.481 1.555 – – – – –
Q = 3 1.480 1.555 3.171 – – – –
Q = 7 1.480 1.540 3.258 1.558 1.578 1.588 1.566

The corresponding reconstructed sound speed distributions are shown in Figure 8. For
ease of visualization and comparison with the true sound speed phantom, the equivalent
pixelwise representations of the reconstructed parameterized sound speed distributions are
presented. The estimated sound speed values for Q ≤ 7 are also summarized in Table 4. For
the Q = 7 case, the estimated sound speed distribution closely matches the true sound speed
distribution. For Q < 7, the true sound speed distribution cannot be recovered due to the
choice of the parameterization. In these cases, effective sound speeds are estimated for certain
regions. For example, for the Q = 2 and Q = 3 cases, a single sound speed value is estimated
for the soft tissue of the mouse. In these cases, the estimated sound speed falls between the
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Figure 9. Initial pressure distributions reconstructed by parameterized JR for β = 10−4 with 7 parameters
from measured data that (a) ignored mass density variations and (b) included mass density variations. Sound
speed distributions reconstructed by parameterized JR with 7 parameters from measured data that (c) ignored
mass density variations and (d) included mass density variations. Mass density variations were not included
in the reconstruction process. The initial pressure images are shown in a grayscale window of [0.0, 1.1]. The
sound speed images are shown in a grayscale window of [1.47, 1.70] mm/µs.

lower sound speed value of the bulk tissue and the higher sound speed values of the organs
(1.555 mm/µs for Q = 2 and Q = 3). Similarly, for the Q = 1 case, a single effective sound
speed is estimated, which is between the background sound speed and the bulk soft tissue
sound speed of the mouse (1.495 mm/µs). When each pixel is allowed to independently vary,
the estimated sound speed distribution is very noisy.

5.3. Mass density variations. The previous results were reconstructed from measured
data that were generated assuming a homogeneous mass density distribution. However, the
mass density of bone differs substantially from that of soft tissue. In principle, the proposed
approach could be employed to jointly estimate the mass density distribution along with the
initial pressure and sound speed distributions. This could result in an inverse problem that
is more ill-conditioned. In order to evaluate the impact of ignoring mass density variations,
the measured data were generated for the heterogeneous mass density distribution shown in
Figure 1(d). Then, parameterized JR was performed assuming a homogeneous mass density
distribution. The reconstructed initial pressure and sound speed distributions are shown in
Figure 9. As references, the initial pressure and sound speed distributions reconstructed from
measured data that did not include mass density variations are also shown. Ignoring mass
density variations did have a minor impact on the accuracy of the reconstructed initial pressure
and sound speed distributions. In particular, the estimated sound speed value of the bone
was overestimated (3.340 vs. 3.198 mm/µs). Modeling the mass density variations during
the simulation to generate the measured data increased the percentage of acoustic energy
reflected at the bone soft tissue interface. Increasing the sound speed value of bone during the
reconstruction, in the absence of mass density variations, also results in a larger percentage
of acoustic energy being reflected. This could explain the overestimation of the bone sound
speed.

5.4. Approximate segmentations. Figure 10 shows the reconstructed initial pressure and
sound speed distributions obtained by parameterized JR for the approximate parameteriza-
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Figure 10. Reconstructed initial pressure distributions obtained by parameterized JR for β = 10−4 with (a)
2 parameters with perfect segmentation, (b) 2 parameters with imperfect segmentation, (c) 3 parameters with
perfect segmentation, and (d) 3 parameters with imperfect segmentation. Reconstructed sound speed distributions
obtained by parameterized JR with (e) 2 parameters with perfect segmentation, (f) 2 parameters with imperfect
segmentation, (g) 3 parameters with perfect segmentation, and (h) 3 parameters with imperfect segmentation.
The initial pressure images are shown in a grayscale window of [0.0, 1.1]. The sound speed images are shown
in a grayscale window of [1.47, 1.70] mm/µs.

tions shown in Figure 3. As references, the reconstructed initial pressure and sound speed
distributions obtained by use of the true parameterizations are also shown. For the Q = 2
case, the approximate parameterization is very close to the true parameterization, as the
outer boundary of the mouse can be estimated relatively accurately. As a result, there are
only minor differences between the reconstructed images for the exact and the approximate
segmentations. For the Q = 3 case, the outer boundary of bone was not estimated particu-
larly accurately. As a result, there are larger differences between the reconstructed images for
the exact and approximate segmentations. Still, the reconstructed initial pressure and sound
speed images for the Q = 3 approximate parameterizations both have lower RMSEs than the
corresponding images for Q = 2 with exact parameterizations. This suggests that the method
is at least somewhat robust to errors in the assumed parameterization.

5.5. Impact of frequency content. The values of the data fidelity term, evaluated at the
true initial pressure distribution and the true background sound speed, for various values of
the tissue sound speed are shown in Figure 11(a). The values are normalized in order to allow
comparison for measured data subjected to low-pass filters with different cutoff frequencies.
It can be seen that the width of the basin of attraction about the true tissue sound speed of
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Figure 11. Normalized cost function values for (a) different tissue sound speeds and (b) different background
sound speeds after applying a Hann low-pass filter to the measured data. Results are shown for several cutoff
frequencies.

1.54 mm/µs grows wider as the cutoff frequency for the low-pass filter is reduced. This provides
some evidence of how low-pass filtering the measured data can help avoid local minima. For
example, for the data with a cutoff frequency of 6 MHz, if an initial guess for the tissue
sound speed of 1.5 mm/µs, the background value, was employed, the estimated value would
become smaller instead of approaching its true value. This is not true for the cases with lower
cutoff frequencies. However, there is a trade-off in filtering the data too aggressively. The
basin of attraction also becomes shallower as the cutoff frequency is decreased. This could
result in slower convergence. This is consistent with prior work that recommends maximizing
bandwidth while avoiding cycle skipping [53].

Similar observations can be made for the case where the background sound speed is swept
and the initial pressure distribution and the tissue sound speed are held fixed at their true
values. In this case, the width of the basin of attraction is even narrower (see Figure 11(b)).
This is because the propagation distance through the background is longer than that through
the tissue for the considered phantom. As a result, phase errors can accumulate over longer
distances, leading to a greater sensitivity to absolute errors in the estimated sound speed.

6. Description of experimental studies. The value of the proposed approach was also
evaluated through experimental studies.

6.1. Methods. In vivo measurements were previously acquired from the trunk of an anes-
thetized adult nude mouse (Hsd:Athymic Nude-FoxlNU, Harlan) [31]. All experimental pro-
cedures were carried out in conformity with laboratory animal protocols approved by the
Animal Studies Committee at Washington University in St. Louis.

The imaging system consisted of a circular ring array of radius 50 mm with 512 evenly
distributed ultrasonic transducers. The transducers were elevationally focused and had a
nominal central frequency of 5 MHz. The pressure data were recorded at a sampling rate of
40 MHz for 2000 time steps. By manual inspection, 12 transducers were identified as having
low sensitivity and were not employed during the image reconstruction process. Illumination
was performed by a 1064 nm pulsed laser with a 5-9 ns pulse width and pulse repetition
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Figure 12. (a) The pressure amplitude and (b) frequency spectrum of the estimated EIR for the experimental
system.

rate of 50 Hz (DLS9050, Continuum). The fluence on the tissue surface was approximately
18 mJ/cm2. More detailed information on this imaging system can be found in [31].

The EIR of the transducers was estimated by measuring the pressure from a tiny point-like
absorber placed in the center of the ring array as described in the supplementary material
of [31]. The measured pressure signals were shifted to align the peaks in order to account
for small differences in the propagation distances. Then, the frequency response of a point
source was deconvolved from the measured pressure by use of Wiener deconvolution. Finally,
the responses were averaged across all transducers. The resulting estimated EIR is shown in
Figure 12.

The measured data were upsampled by linear interpolation to an effective sampling fre-
quency of 80 MHz in order to increase the numerical stability of the wave solver [49]. The
resulting data were then filtered with a Butterworth low-pass filter with a cutoff of 12 MHz.
In addition, the measured pressure data were shifted to account for any unwanted temporal
shift induced by the EIR. To estimate the size of this shift, a narrow pulse was convolved with
EIR and the shift in the envelope of the pulse was calculated.

6.2. Fixed sound speed. The initial pressure distribution was reconstructed for several
fixed constant sound speed values by solving (5). The simulation grid consisted of 2048×2048
pixels with a pixel size of 0.05 mm. A temporal sampling rate of 80 MHz was employed. The
radius of the field-of-view was 40 mm. The stopping criterion was when the change in the
`2-norm of the initial pressure distribution between successive iterations was less than 10−4.

6.3. Joint reconstruction. Joint reconstruction was performed for a two-parameter sound
speed model. To obtain the parameterized model, the outer boundary of the mouse was
manually segmented from the reconstructed initial pressure distribution image for a fixed
constant sound speed of 1.50 mm/µs. The estimated segmentation is shown in Figure 13.

To avoid the phenomenon of cycle skipping discussed in section 4.6, the JR images were
estimated by a multistage process. First, the measured data were filtered with a Hann low-
pass filter with a cutoff frequency of 1 MHz. Due to the lower cutoff frequency, the temporal
sampling frequency was reduced to 40 MHz from the 80 MHz employed when the cutoff was
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Figure 13. Estimated segmented regions of the mouse for a 2-parameter sound speed model.

12 MHz. The number of pixels in the simulation grid and the pixel size were also reduced to
1024×1024 and 0.1 mm, respectively. The initial guess for the initial pressure distribution was
the vector of all zeros. The initial guess for the parameterized sound speed distribution was
1.48 mm/µs for the background and 1.54 mm/µs for the mouse. This stage was run for 600
iterations. It was observed that later iterations resulted in small changes to initial pressure
distribution and minimal changes to the estimated parameterized sound speed distribution.
Second, the estimated initial pressure and sound speed distributions were refined by JR by use
of the measured data with the 12 MHz cutoff frequency. By increasing the cutoff frequency,
finer structures in the object can be recovered. The initial guesses were the estimated initial
pressure and sound speed distributions obtained from the earlier stage. This stage was run
for 500 iterations. Finally, the initial pressure distribution was reconstructed for the fixed
sound speed distribution obtained by the previous stage by use of FISTA [6]. In this case,
the stopping criterion was when the change in the `2-norm of the initial pressure distribution
between successive iterations was less than 10−4. Since the final stage employed an accelerated
first-order optimization method (FISTA), faster convergence could be achieved compared with
the unaccelerated proximal gradient method employed as part of the JR procedure. This also
avoids the line search procedure employed to choose a step size for updating the parameterized
sound speed distribution.

7. Results of experimental studies. The reconstructed initial pressure distribution im-
ages for several fixed constant sound speed values are shown in Figure 14. In the reconstructed
images, strong surface and interior vessel structures are observed. The interior vessel struc-
tures appear most in focus for a constant sound speed value of 1.500 mm/µs. However, for
this sound speed value, some surface vessels, particularly along the lower right side of the
mouse, appear as arcs rather than points, suggesting that they are out-of-focus. Thus, there
is no single constant sound speed value for which all of the features of the image are in focus.

A multistage JR process was also employed to estimate the initial pressure and sound speed
distributions. The estimated sound speed values following the first stage were 1.489 mm/µs
for the background and 1.565 mm/µs for the body of the mouse. These were refined to
1.492 mm/µs and 1.561 mm/µs for the background and mouse body, respectively, during the
second stage. In Figure 15, the initial pressure distribution images reconstructed by assum-
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Figure 14. Reconstructed initial pressure distributions for several fixed constant sound speed values of
(a) 1.490 mm/µs, (b) 1.495 mm/µs, (c) 1.500 mm/µs, and (d) 1.505 mm/µs. Results are shown for β = 10−1

in a grayscale window of [0, 8000].
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Figure 15. Reconstructed initial pressure distributions for β = 10−1 assuming (a) the sound speed distri-
bution employed as the initial guess for the first stage of JR and (b) the sound speed distribution obtained by
parameterized JR for Q = 2. Results are shown in a grayscale window of [0, 8000].

ing the initial guess for the sound speed distribution and the final sound speed distribution
obtained by JR are shown. The vessels can be much more clearly visualized in the image
obtained with the final sound speed distribution compared with that corresponding to the
initial guess. By employing a multistage reconstruction process, a focused initial pressure
distribution image can be obtained even if there are moderate errors in the initial guess for
the parameterized sound speed distribution.

The JR image also demonstrates improvement over the image obtained with a tuned
constant sound speed. This is seen most clearly in the zoomed-in regions of the reconstructed
initial pressure distributions shown in Figure 16. The largest difference can be seen in the
rightmost surface vessel, which appears as an arc in the constant sound speed image and a
point in the JR image. In addition, several interior vessels are better focused in the JR image.
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(a) (b)

Figure 16. Zoomed-in region of the reconstructed initial pressure distributions for β = 10−1 assuming (a)
a tuned constant sound speed of 1.500 mm/µs and (b) the sound speed distribution obtained by parameterized
JR for Q = 2. The arrows point to structures that are in focus in the JR image, but not in the tuned constant
sound speed image. Results are shown in a grayscale window of [0, 6000].

8. Conclusions. Parameterized JR can allow estimation of the initial pressure distribution
and a low-dimensional representation of the sound speed distribution from PACT measure-
ments alone. This can result in more accurate reconstructed initial pressure distributions than
assuming a constant sound speed. By considering a low-dimensional parameterized form for
the sound speed distribution, the JR problem can be made more stable. In addition, parame-
terized JR may offer advantages compared with manually tuning a parameterized sound speed
model, particularly as the number of parameters in the model is increased.

More generally, this approach can be thought of as a specific example of employing dif-
ferent discretizations of the object for the forward and inverse problems. By choosing the
discretizations independently, representations of the object can be selected such that they are
most suitable for their respective tasks. For example, the spatial sampling requirements of
the k-space numerical wave solver employed in this work necessitated a small pixel size and a
correspondingly high-dimensional representation of the sound speed distribution [49]. On the
other hand, the inverse problem was seen to benefit from having fewer unknowns.

Still, parameterized JR does not eliminate many of the issues associated with JR of the
initial pressure and sound speed distributions in a general setting. Local minima still represent
a challenge, particularly for the case of high-frequency measured data. Practical methods
for determining useful parameterizations for the sound speed distribution in an experimental
setting are also needed. More careful design of cost function could help ensure that minimizing
the cost function produces images that maximize the most relevant image quality measures.
The assumed forward model also has a number of limitations, including 1) a two-dimensional
imaging model is assumed while experimentally the wave propagation is a three-dimensional
phenomenon, 2) the spatial impulse response of the transducers is ignored, and 3) acoustic
attenuation and mass density variations are neglected. In addition, use of a forward model
based on the elastic wave equation would permit consideration of shear waves, which can
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occur in bone [36]. More efficient optimization methods for solving the JR problem, such
as accelerated first-order or second-order methods, would reduce the computational cost and
thus increase the attractiveness of this approach.

Appendix A. Overview of adjoint state method. The adjoint state method can be
employed to calculate the gradient of a functional F with respect to some model parameters
m. Excellent reviews of this method and its application to inverse scattering and geophysics
can be found in [37] and [42], respectively. Consider the case where the functional depends
on the model parameters through some state variables Ψ,

F (m) = f (Ψ (m) ,m) .(18)

For example, m could be the sound speed or initial pressure distributions, Ψ could be the
acoustic pressure, and F could be the least squares error between the measured acoustic
pressure and the estimated acoustic pressure given some model. The relationship between m
and Ψ can be viewed as being enforced by some constraints,

hk (Ψ,m) = 0(19)

for k ∈ [0, K − 1], where K is the total number of constraints. These constraints could
correspond to the acoustic wave equation, given by (1).

The derivative of F with respect to m is then

dF

dm
=
∂f

∂Ψ

∂Ψ

∂m
+
∂f

∂m
.(20)

This expression seems to indicate that calculation of dF
dm requires calculation of ∂Ψ

∂m , which is
often high-dimensional and expensive to compute.

The adjoint state method provides a prescription for calculating dF
dm without explicitly

computing ∂Ψ
∂m . The adjoint state method can be derived by use of perturbation theory

or through the use of Lagrange multipliers. Here, the Lagrangian interpretation is given.
Consider the augmented functional L, given by

L (Ψ,m, λ) = f (Ψ,m)−
∑
k

〈λk, hk (Ψ,m)〉 ,(21)

where λk are the adjoint state variables and λ is shorthand for the collection of all K ad-
joint state variables. This corresponds to the Lagrangian for the optimization problem of
minimizing f with respect to Ψ subject to the constraints hk (Ψ,m) = 0. Note that when
hk (Ψ,m) = 0, i.e., Ψ and m are related by the chosen constraints,

dF

dm
=
∂L
∂Ψ

∂Ψ

∂m
+
∂L
∂m

.(22)

This holds independent of the choice of λ. As a result, λ can be chosen such that (22) can be
evaluated efficiently. In particular, λ is chosen such that

∂L
∂Ψ

=
∂f

∂Ψ
−
∑
k

∂

∂Ψ
〈λk, hk〉 = 0.(23)
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This is known as the adjoint state equation. Let the solution to (23) be denoted λ̃ and let Ψ̃
satisfy the constraints hk (Ψ,m) = 0. Then, (Ψ̃, λ̃) represents a saddle point of L as ∂L

∂Ψ = 0

and ∂L
∂λk

= −hk (Ψ,m) = 0 at that point. With this, the derivative of F with respect to m
can finally be calculated as

dF

dm
=
∂L
(

Ψ̃,m, λ̃
)

∂m
=

∂f

∂m
−
∑
k

〈
λ̃k,

∂hk
∂m

〉
.(24)

The utility and applicability of this method depends on a number of factors. First, F , f , hk,
and Ψ must be continuously differentiable. Second, each m must correspond to a unique Ψ.
Third, there must exist an efficient method for solving (23).

Appendix B. Application of adjoint state method to PACT. For simplicity, in this
section, a continuous formulation of the joint optimization problem is considered, in keeping
with the presentation of the previous section. The constraints correspond to the acoustic wave
equation given by (1),

h0 (p,u, p0, c) = ρ (r)
∂u (r, t)

∂t
+∇p (r, t) ,(25a)

h1 (p,u, p0, c) =
1

ρ (r) c (r)2

∂p (r, t)

∂t
+∇ · u (r, t) ,(25b)

h2 (p,u, p0, c) = p (r, 0)− p0 (r) ,(25c)

h3 (p,u, p0, c) = u (r, 0) ,(25d)

where p and u are the state variables and c and p0 are the sought-after model parameters.
In this work, the functional to-be-minimized is

f (p) =
1

2

M−1∑
i=0

∫ T

0
dt
(
gi (t)−Mip (r, t)

)2
,(26)

where gi (t) is the pressure recorded by the ith transducer andMi is the restriction of the pres-
sure over the whole domain to the location of the ith transducer. The augmented functional
is given by

L =
1

2

M−1∑
i=0

∫ T

0
dt (gi (t)−Mip (r, t))2 −

∫ T

0
dt

〈
λ1, ρ

∂u

∂t
+∇p

〉
U

−
∫ T

0
dt

〈
λ2,

1

ρc2

∂p

∂t
+∇ · u

〉
V

− 〈λ3,u (r, 0)〉U − 〈λ4, p (r, 0)− p0 (r)〉V ,

(27)

where

〈x,y〉U =

n∑
i=1

∫
dr xi (r) yi (r) ,

〈a, b〉V =

∫
dr a (r) b (r)

are the inner products for vector-valued and scalar-valued quantities, respectively. Here, n is
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the number of components in the vector-valued quantity and xi represents the ith component
of x.

To compute the derivatives needed to solve (23), it is useful to rearrange the constraint
terms by use of integration-by-parts and the fact that the adjoint of the gradient operator is
the negative divergence operator. The term in the Lagrangian corresponding to (25a) can be
rewritten as ∫ T

0
dt

〈
λ1, ρ

∂u

∂t
+∇p

〉
U

=

∫ T

0
dt

[〈
λ1, ρ

∂u

∂t

〉
U

+ 〈λ1,∇p〉U
]

=

∫ T

0
dt

[〈
ρλ1,

∂u

∂t

〉
U

− 〈∇ · λ1, p〉V
]

= 〈ρλ1,u〉U |
T
0 −

∫ T

0
dt

[〈
ρ
∂λ1

∂t
,u

〉
U

+ 〈∇ · λ1, p〉V
]
.

Similarly, the term in the Lagrangian corresponding to (25b) can be rewritten as∫ T

0
dt

〈
λ2,

1

ρc2

∂p

∂t
+∇ · u

〉
V

=

∫ T

0
dt

[〈
λ2,

1

ρc2

∂p

∂t

〉
+ 〈λ2,∇ · u〉V

]
=

∫ T

0
dt

[〈
1

ρc2
λ2,

∂p

∂t

〉
V

− 〈∇λ2,u〉U
]

=

〈
1

ρc2
λ2, p

〉
V

∣∣∣∣T
0

−
∫ T

0
dt

[〈
1

ρc2

∂λ2

∂t
, p

〉
V

+ 〈∇λ2,u〉U
]
.

With this, the Lagrangian can be rewritten as

L =
1

2

M−1∑
i=0

∫ T

0
dt (gi (t)−Mip (r, t))2 − 〈ρλ1,u〉U |

T
0

+

∫ T

0
dt

[〈
ρ
∂λ1

∂t
,u

〉
U

+ 〈∇ · λ1, p〉V
]
−
〈

1

ρc2
λ2, p

〉
V

∣∣∣∣T
0

+

∫ T

0
dt

[〈
1

ρc2

∂λ2

∂t
, p

〉
V

+ 〈∇λ2,u〉U
]
− 〈λ3,u (r, 0)〉U − 〈λ4, p (r, 0)− p0 (r)〉V .

(28)

To obtain an expression for the adjoint state equation, compute ∂L
∂p and ∂L

∂u , set the expressions
equal to zero, and group the terms by their time dependence. This yields

ρ (r)
∂λ1 (r, t)

∂t
+∇λ2 (r, t) = 0,(29a)

∇ · λ1 (r, t) +
1

ρ (r) c (r)2

∂λ2 (r, t)

∂t
= −S̃ (r, t) ,(29b)

λ1 (r, T ) = 0,(29c)

λ2 (r, T ) = 0,(29d)

λ3 (r) = ρ (r)λ1 (r, 0) ,(29e)

λ4 (r) =
1

ρ (r) c (r)2λ2 (r, 0) ,(29f)
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where

S̃ (r, t) =

M−1∑
i=0

M†i
(
Mip (r, t)− gi (t)

)
.(30)

The superscript † is employed to denote the adjoint. The action of M†i can be computed as

M†ig (t) = Λ†i

(
h†e (t) ∗t g (t)

)
,(31)

where Λ†i amounts to placing the corresponding value at the location of the ith transducer
and

h†e (t) ∗t g (t) = he (−t) ∗t g (t) = F−1 {F {he}∗F {g}} ,

where F is the Fourier transform and ∗ denotes the complex conjugate.
A change of variables can be employed to change the final conditions to initial conditions

qi (r, t) = λi (r, T − t) .(32)

This gives a set of differential equations that can be solved by the same method as employed
to solve (1):

ρ (r)
∂q1 (r, t)

∂t
+∇q2 (r, t) = 0,(33a)

∇ · q1 (r, t) +
1

ρ (r) c (r)2

∂q2 (r, t)

∂t
= −S̃ (r, T − t) ,(33b)

q1 (r, 0) = 0,(33c)

q2 (r, 0) = 0.(33d)

Finally, the gradients with respect to the model parameters are given by

dF

dp0
(r) = λ4 (r) =

1

ρ (r) c (r)2 q2 (r, T ) ,(34)

dF

dc
(r) = −

∫ T

0
dt

2

ρ (r) c (r)3

∂p (r, t)

∂t
q2 (r, T − t) .(35)

Appendix C. Two-parameter backtracking line search. A two-part backtracking line
search procedure, detailed in Algorithm 2, is employed to select a scalar step size for the initial
pressure distribution and a scalar step size for the parameterized sound speed distribution.
First, a step size is chosen for updating the initial pressure distribution, following the method
outlined in [41, 7]. During this step, the sound speed is kept fixed at its current estimate.
Then, a step size for updating the parameterized sound speed distribution is chosen. During
this step, the cost function is evaluated at the updated initial pressure value. In some cases,
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if the gradient with respect to the parameterized sound speed distribution changes rapidly
for small variations in the initial pressure distribution, the previously calculated gradient
may not represent a descent direction at the updated initial pressure distribution value. To
address this case, if a suitable step size for the sound speed cannot be found in lmax line
search steps, the update to the parameterized sound speed distribution is skipped. This
ensures that the chosen step sizes lead to a decrease in the value of the cost function. This
situation could be avoided by recalculating the gradient with respect to the sound speed at the
updated initial pressure value or by performing a grid search over the two step sizes. Whether
this additional computational cost is justified will depend on how sensitive the gradient with
respect to the sound speed is to changes in the initial pressure distribution, which may be
problem-dependent.

Algorithm 2 Two-parameter backtracking line search.

Input: αp0, α
c
0, F

(k),G
(k)
p , G

(k)
c , lmax

Output: α̂pk, α̂
c
k

1: α̂pk ← αp0
2: found ← false
3: while not found do
4: p̃0 ← prox

α̂p
kβR

(
p

(k)
0 − α̂

p
kG

(k)
p

)
5: if F

(
p̃0,Φ

(
c

(k)
p

))
> F (k) +

〈
G

(k)
p , p̃0 − p

(k)
0

〉
+ 1

2α̂p
k

‖p̃0 − p
(k)
0 ‖22 then

6: α̂pk ← α̂pk/2
7: else
8: found ← true
9: end if

10: end while
11: l← 0 {l is the line search step number.}
12: α̂ck ← αc0
13: found ← false
14: while not found and l < lmax do
15: c̃p ← c

(k)
p − α̂ckBG

(k)
c

16: if F
(
p̃0,Φ

(
c

(k)
p

))
< F (p̃0,Φ (c̃p)) then

17: α̂ck ← α̂ck/2
18: else
19: found ← true
20: end if
21: l← l + 1
22: end while
23: if l is lmax then
24: α̂ck ← 0
25: end if
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